Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lei Chen, ${ }^{\text {a }}$ Hong Zhou, ${ }^{\text {a,b }}$
Zhi-Quan Pan, ${ }^{\text {a }}$ Xue-Lei Hu^{a} and Bo Liu ${ }^{\mathrm{a}}$

${ }^{\text {a }}$ Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Chemical Technology, 430073, Wuhan, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry and Molecular Science of Wuhan University, 430072, Wuhan, People's Republic of China

Correspondence e-mail: zhiqpan@163.com

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.047$
$w R$ factor $=0.104$
Data-to-parameter ratio $=15.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

Bis[μ-4-fluoro-6-hydroxymethyl-2-(2,5,8-triaza-oct-1-enyl)phenolato]dicopper(II) bis(perchlorate) methanol solvate

The title dinuclear complex, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{FN}_{3} \mathrm{O}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot-$ $\mathrm{CH}_{4} \mathrm{O}$, was synthesized by condensation between diethylenetriamine and 2-formyl-4-fluoro-6-hydroxymethylphenol in the presence of copper(II). It contains two similar units, which are linked by $\mathrm{Cu}-\mathrm{O}$ bonds. The approximate planes of the two units are parallel to each other, and $\pi-\pi$ interaction exists between the two units.

Comment

Dinuclear metal complexes, especially those of diphenolderived Schiff bases, have attracted much attention because they have contributed significantly to the understanding of the chemical behaviour of coupled systems. This factor is very important in coordination chemistry and biological mimicry (Pilkington \& Robson, 1970; Mohanta et al., 1998; Wang et al., 1997; Brianese et al., 1999; Gao et al., 2001). Complexes synthesized by the condensation between 2,6-diformyl-4-Rphenol and alkylenepolyamines have been obtained by the template reaction ($R=\mathrm{CH}_{3}$, n-butyl and Cl; Shangguan et al., 2000; Zhou et al., 2005; Wang et al., 1997), but few complexes containing fluorine substituents have been reported. In this work, the synthesis of a new complex, (I), containing fluorine substituents, is reported.

A perspective view of the title complex is given in Fig. 1. Selected bond distances and angles relevant to the $\mathrm{Cu}^{\text {II }}$ coordination environments are listed in Table 1. The dinuclear cation contains two similar copper(II) units with one ligand L

Received 26 May 2005 Accepted 27 June 2005 Online 6 July 2005

Figure 1
A view of the title complex, showing the labelling of the non-H atoms and 30% probability ellipsoids. H atoms have been omitted.
each (L is formed by condensation between 2-formyl-4-fluoro-6-hydroxymethylphenol and diethylenetriamine). In the first unit, the $\mathrm{Cu}^{\mathrm{II}}$ ion is coordinated by an N atom of one Schiff base, two amine N atoms and a phenol O atom, as well as being weakly coordinated by one perchlorate O atom which is trans to a methanol O atom to form an elongated octahedron. The bond distances in plane 1 , comprising atoms $\mathrm{Cu} 1, \mathrm{~N} 1, \mathrm{~N} 2$, N 3 and O 1 , are in the range 1.907 (2)-2.018 (3) \AA. The $\mathrm{Cu} 1-$ $\mathrm{O} 4\left(\mathrm{HOCH}_{2}-\right)$ bond distance is $2.471(3) \AA$, and the angle between the bond and plane 1 is $81.00(12)^{\circ}$. The $\mathrm{Cu} 1-$ $\mathrm{O} 21\left(\mathrm{OClO}_{3}\right)$ bond distance is $2.927(3) \AA$, and the angle between the bond and plane 1 is $81.30(12)^{\circ}$, which makes the octahedron distorted. Because the $\mathrm{C} 5-\mathrm{N} 3$ bond parallels the benzene plane and the sum of the angles around Cu 1 is 359.67°, the $\mathrm{Cu}^{\mathrm{II}}$ ion, Schiff base, phenoxide group and amide N atoms lie in an approximate plane. In the second unit, the coordination environment of atom Cu 2 is similar to the first unit, except that perchlorate is displaced by methanol and the $\mathrm{Cu} 2-\mathrm{O} 5$ bond distance $[2.925(3) \AA$] is equal to the $\mathrm{Cu} 1-$ O 21 bond, which makes the relative bond distances and angles in the two units slightly different. Two $\mathrm{Cu}-\mathrm{O}$ bonds $(\mathrm{Cu} 2-$ O 2 and $\mathrm{Cu} 1-\mathrm{O} 4$) bridge the two units and the two benzene rings are parallel to each other [the dihedral angle of the two benzene planes is $2.90(13)^{\circ}$]. The distance between the two centres of the benzene planes is $3.476 \AA$, indicating that they form $\pi-\pi$ stacks in the crystal structure.

Experimental

2-Formyl-4-fluoro-6-hydroxymethylphenol was prepared according to the literature method (Taniguchi, 1984; Okawa \& Kida, 1972). To a mixture of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{~g}, 0.25 \mathrm{mmol})$ and 2-formyl-4-fluoro-6- hydroxymethylphenol (0.084 g 0.5 mmol) in absolute methanol $(15 \mathrm{ml})$ was added dropwise with stirring a methanol solution (15 ml) containing diethylenetriamine ($0.0518 \mathrm{~g}, 0.5 \mathrm{mmol}$). The mixture was stirred for 12 h at room temperature. A dark-green solution formed. A methanol solution (15 ml) containing $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.093 \mathrm{~g}$, 0.25 mmol) was added dropwise and stirred for 3 h at room
temperature. Black block-shaped crystals of $\left[\mathrm{Cu}_{2}(\mathrm{MeOH}) L_{2}\left(\mathrm{ClO}_{4}\right)\right]$ ClO_{4} suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into the mother solution over a period of one week. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3409(\mathrm{O}-\mathrm{H}), 1647(\mathrm{C}=\mathrm{N}), 1092$ and $634\left(\mathrm{ClO}_{4}^{-}\right)$.

Crystal data

```
\(\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{FN}_{3} \mathrm{O}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot-\)
    \(\mathrm{CH}_{4} \mathrm{O}\)
\(M_{r}=866.59\)
Monoclinic, \(P 2_{b} / n\)
\(a=8.5227\) (7) А
\(b=33.412(3) \AA\)
\(c=12.2415(10) \AA\)
\(\beta=93.702(2)^{\circ}\)
\(V=3478.7(5) \AA^{3}\)
\(Z=4\)
```

$D_{x}=1.655 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5049
reflections
$\theta=2.5-20.0^{\circ}$
$\mu=1.46 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, black
$0.40 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.71, T_{\text {max }}=0.75$
28629 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.104$
$S=1.01$
6805 reflections
451 parameters
H -atom parameters constrained

$$
\begin{aligned}
& 6805 \text { independent reflections } \\
& 5377 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.044 \\
& \theta_{\max }=26.0^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-40 \rightarrow 41 \\
& l=-15 \rightarrow 14 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.05 P)^{2}\right. \\
& \quad+1.55 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.907(2)$	$\mathrm{Cu} 2-\mathrm{N} 5$	$2.003(3)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$1.918(3)$	$\mathrm{Cu} 2-\mathrm{N} 4$	$2.003(3)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.014(3)$	$\mathrm{Cu} 1-\mathrm{O} 4$	$2.471(3)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.018(3)$	$\mathrm{Cu} 1-\mathrm{O} 21$	$2.927(3)$
$\mathrm{Cu} 2-\mathrm{O} 3$	$1.901(2)$	$\mathrm{Cu} 2-\mathrm{O} 2$	$2.462(3)$
$\mathrm{Cu} 2-\mathrm{N} 6$	$1.935(3)$	$\mathrm{Cu} 2-\mathrm{O} 5$	$2.925(3)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$94.87(11)$	$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{N} 6$	$94.74(11)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$178.67(12)$	$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{N} 5$	$178.59(11)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 2$	$85.00(13)$	$\mathrm{N} 6-\mathrm{Cu} 2-\mathrm{N} 5$	$84.00(12)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$94.43(10)$	$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{N} 4$	$95.39(12)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 1$	$162.54(13)$	$\mathrm{N} 6-\mathrm{Cu} 2-\mathrm{N} 4$	$165.18(12)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$85.37(12)$	$\mathrm{N} 5-\mathrm{Cu} 2-\mathrm{N} 4$	$85.74(13)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 D \cdots \mathrm{O} 22^{\mathrm{i}}$	0.90	2.37	$3.251(5)$	165
$\mathrm{~N} 1-\mathrm{H} 1 D \cdots \mathrm{O} 23^{\mathrm{i}}$	0.90	2.47	$3.228(4)$	142
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{O} 22^{\mathrm{i}}$	0.90	2.20	$3.086(4)$	167
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 23^{\mathrm{ii}}$	0.91	2.11	$2.959(5)$	156
$\mathrm{~N} 5-\mathrm{H} 5 \cdots \mathrm{O} 11^{\mathrm{iii}}$	0.91	2.56	$3.430(5)$	161
$\mathrm{O} 4-\mathrm{H} 4 F \cdots \mathrm{O} 22^{\mathrm{i}}$	0.85	2.54	$3.185(4)$	133
$\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1$	0.85	2.18	$2.762(3)$	126
$\mathrm{O} 4-\mathrm{H} 4 F \cdots \mathrm{O} 3$	0.85	2.20	$2.779(3)$	125
$\mathrm{O} 5-\mathrm{H} 5 C \cdots \mathrm{O} 11$	0.85	1.91	$2.756(4)$	171

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x+1, y, z$; (iii) $x-1, y, z$.

metal-organic papers

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA, \mathrm{~N}-\mathrm{H}$ distances of 0.90 and $0.91 \AA$, and $\mathrm{O}-\mathrm{H}$ distances equal to $0.85 \AA$, and included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2-1.5$ $U_{\text {eq }}(\mathrm{C}, \mathrm{N}, \mathrm{O})$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the National Science Foundation of China (grant No. 20271039).

References

Brianese, N., Casellato, U., Tamburini, S., Tomasin, P. \& Vigota, P. A. (1999). Inorg. Chim. Acta, 293, 178-194.
Bruker (2000). SMART (Version 6.22), SAINT (Version 6.22), SHELXTL (Version 6.10) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Gao, J., Martell, A. E. \& Motekaitis, R. J. (2001). Inorg. Chim. Acta, 325, 164 170.

Mohanta, S., Baitalik, S., Dutta, S. K. \& Adhikary, B. (1998). Polyhedron, 17, 2669-2677.
Okawa, H. \& Kida, S. (1972). Bull. Chem. Soc. Jpn, 45, 1759-1770.
Pilkington, N. H. \& Robson, R. (1970). Aust. J. Chem. 23, 2226-2236
Shangguan, G. Q., Matrell, A. E., Zhang, Z. R. \& Reibenspies, J. H. (2000). Inorg. Chim. Acta, 299, 47-58.
Taniguchi, S. (1984). Bull. Chem. Soc. Jpn, 57, 2683-2689.
Wang, Z., Reibenspies, J. \& Martell, A. E. (1997). Inorg. Chem. 36, 629-636.
Zhou, H., Peng, Z. H., Pan, Z. Q., Liu, B. \& Liu, Y. Q. (2005). J. Coord. Chem. 58, 443-451.

[^0]: (C) 2005 International Union of Crystallography

